π -Conjugation Control

DOI: 10.1002/anie.201107265

Trinitroxide-Trioxytriphenylamine: Spin-State Conversion from Triradical Doublet to Diradical Cation Triplet by Oxidative Modulation of a π -Conjugated System**

Shuichi Suzuki, Atsuki Nagata, Masato Kuratsu, Masatoshi Kozaki, Rika Tanaka, Daisuke Shiomi, Kenji Sugisaki, Kazuo Toyota, Kazunobu Sato, Takeji Takui, and Keiji Okada*

Organic-based open-shell molecules are promising components for next-generation electronic devices because of their wide diversity in molecular design, structural flexibility, and processability.^[1-6] Continuous research in this field has led to interesting findings on the use of these species as spin sources and/or redox-active species: for example, molecule-based magnets, $^{[1,3]}$ electrical conductors, $^{[3,6,7]}$ radical-based batteries, $^{[3,4,8]}$ spintronics devices, $^{[3,5,6]}$ and molecular spin-based quantum computers.[4c-e] In these studies, control of the ferromagnetic or antiferromagnetic couplings between spin sources plays an important role in their unique magnetic properties. [6,9-12] Electron-donor molecules substituted with stable neutral radical species have frequently been used to construct high-spin molecules. [6,11-13] Selective oxidation of the electron-donor moieties of these molecules gives radicalsubstituted radical cation species, as demonstrated in the design of magnetic-field-responsive charge transport and ferrimagnets.[6,11,12]

Oxidation of the electron donor in a system composed of radicals and a π -donor could alter the π -conjugation network, affecting the magnetic interaction. Tanaka and co-workers reported tetraphenylethene derivative $\mathbf{1}$, where the exchange interaction between two nitroxides is switched from an antiferromagnetic interaction $(J/k_B \approx -66 \text{ and } -93 \text{ K})$

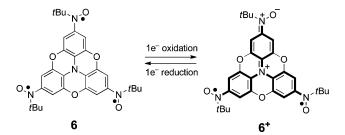
[*] Dr. S. Suzuki, A. Nagata, Dr. M. Kuratsu, Prof. Dr. M. Kozaki, Prof. Dr. D. Shiomi, Dr. K. Sugisaki, Dr. K. Toyota, Prof. Dr. K. Sato, Prof. Dr. T. Takui, Prof. Dr. K. Okada

Department of Chemistry, Graduate School of Science Osaka City University

3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan) E-mail: okadak@sci.osaka-cu.ac.jp

Dr. R. Tanaka

X-ray Crystal Analysis Laboratory, Graduate School of Engineering Osaka City University (Japan)


[***] K.O. thanks the JSPS for a Grant-in-Aid for Scientific Research (22350066). S.S. thanks MEXT (Japan) for a Grant-in-Aid for Scientific Research on Innovative Areas "Emergence of Highly Elaborated π-Space and Its Function" (23108717) and a Grant for Basic Science Research Projects from the Sumitomo Foundation. T.T. acknowledges the financial support of a Grant-in-Aid for Scientific Research on Innovative Areas (Quantum Cybernetics) from MEXT (Japan), also the Funding Program for World-Leading R&D on Science and Technology (FIRST-JSPS, "Quantum Information Processes") and CREST-JST, "Implementation of Molecular-Spin Based Quantum Computers/Quantum Information Processing Systems".

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201107265.

for stereoisomers) to a very weak interaction $(J/k_B \approx 0 \text{ K})$ by two-electron oxidation. This oxidation converts the π -conjugated system into a tetramethyleneethane system that is known to be weakly antiferromagnetic (Scheme 1). [15]

Trinitroxide-substituted triphenylamine 2, synthesized by Iwamura and co-workers, [16] was reported to be in a doublet ground state with $J/k_{\rm B}\approx -135~{\rm K}$ in its neutral state. Interestingly, the cyclic voltammogram of 2 shows a reversible one-electron redox wave owing to the oxidation of triphenylamine. [16c] The oxidized cationic species 2^+ is expected to have a trimethylenemethane-type π -conjugated system in a triplet ground state (Scheme 1)^[17] with a large exchange interaction

Scheme 1. Switching of the π -conjugation networks of 1, 2, and 6 with their oxidized analogues.

similar to the carbon analogue 3^[16a,b,18] and Yang's diradical 4.^[19] However, the oxidized species could not be isolated because of the poor stability of the radical cations, and the exchange interaction remains unanswered.

On the other hand, trioxytriphenylamine (TOT) $\mathbf{5}^{[20]}$ is easily oxidized and gives a stable radical cation both in solution and in the crystalline state in air. These findings led us to design *N-tert*-butylnitroxide-substituted TOT **6**. Herein, we report an oxidative spin-state conversion from a triradical doublet ground state (**6**) to diradical cation triplet ground states (**6**⁺). We also determined the crystal structures of **6** and **6**⁺; the spin properties of these compounds were extensively clarified with theoretical analyses of zero-field splitting and *g* tensors.

Triradical **6** was prepared from **5** in three steps (Scheme 2). Compound **5** was converted into the tribromo derivative **7** with a 95 % yield. Tri-lithiation by n-butyllithium in a mixture of benzene and ether followed by treatment with 2-methyl-2-nitrosopropane dimer gave trihydroxylamine **8**. Oxidation of **8** with an excess of Ag_2O gave triradical **6** in 44 % yield from **7**.

Scheme 2. Synthesis of triradical 6.

The ESR spectrum of triradical **6** was measured in degassed toluene at 293 K (see the Supporting Information). The ESR spectrum was composed of septet lines centered at g = 2.0059 with an intensity ratio of 1:3:6:7:6:3:1, which was attributed to the three equivalent nitrogen nuclei. The line splitting was estimated to be 0.385 mT by spectral simulation. The value is similar to that of triradical **2** (0.406 mT in 2-

methyltetrahydrofuran)^[16] and is approximately one-third of the hyperfine coupling constant of phenyl-*tert*-butylnitroxide ($|a_{\rm N}|$ = 1.208 mT in toluene),^[21] indicating that the absolute value of the intramolecular exchange interaction is much larger than the hyperfine interaction.

Single crystals of **6** suitable for X-ray crystal analysis were obtained by recrystallization from CH_2Cl_2/Et_2O . The X-ray crystal structure is shown in Figure 1. The TOT skeleton of **6** has a shallow bowl structure similar to the structure of **5**. [20a] The N-O bonds in *tert*-butyl nitroxide are oriented in a pseudo- C_3 -symmetry (not crystallographic symmetry). Note that the dihedral angles between the nitroxide C_{sp^2} -N-O planes and the attached benzene rings are in the range of 5–26°.

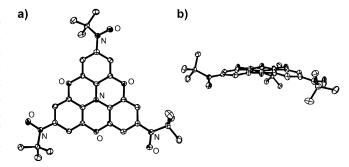
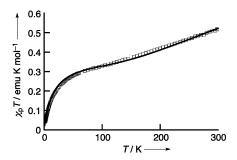



Figure 1. Crystal structure of 6: a) top view; b) side view. Hydrogen atoms are omitted for clarity. Ellipsoids at 50% probability.

Bulk magnetic properties of **6** were investigated by magnetic susceptibility measurements using a SQUID magnetometer (Figure 2). The observed $\chi_p T$ value at 300 K (ca. 0.5 emu K mol⁻¹) was significantly smaller than the expected value for a magnetically independent three-spin system ($\chi_p T = 1.125$ emu K mol⁻¹ assuming g = 2), suggesting the presence of a relatively large antiferromagnetic interaction in the crystalline state. Upon lowering temperature, the $\chi_p T$ values gradually decreased. The observed $\chi_p T - T$ curve was analyzed using the spin Hamiltonian based on a symmetrical triangle model: $H = -2J(S_1S_2 + S_2S_3 + S_3S_1)$. The use of a single J value is based on the pseudo- C_3 -symmetric structure, as obtained from the crystal structure analysis. The expression of $\chi_p T$ is shown in Equation (1). The exchange interaction J and the unspecified magnetic interaction θ were

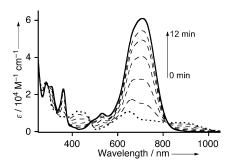


Figure 2. Temperature dependence of $\chi_p T$ for **6** in the polycrystalline state. The solid line shows the simulated curve based on the symmetrical triangle model: $2J/k_B = -410$ K and $\theta = -16$ K.

obtained as $2J/k_{\rm B}=-410~{\rm K}$ and $\theta=-16~{\rm K}$, respectively. The large |J| value can be assigned to the intramolecular magnetic interaction between the *tert*-butyl nitroxides. The θ value is attributable to an intermolecular exchange interaction. Thus, triradical $\bf 6$ was found to be in a doublet ground state. The observed |J| value is much larger than that of triradical $\bf 2$, $^{[16]}$ implying the importance of the planarity in controlling the exchange interaction in $\bf 6$.

$$\chi_{\rm p}T = \frac{N_{\rm A}g^2\mu_{\rm B}^2}{3k_{\rm B}} \frac{1}{T - \theta} \frac{15e^{3J/2k_{\rm B}T} + 3e^{-3J/2k_{\rm B}T}}{4e^{3J/2k_{\rm B}T} + 4e^{-3J/2k_{\rm B}T}} T \tag{1}$$

Triradical **6** showed a reversible one-electron oxidation wave at $E_{\rm ox} = -0.29 \, {\rm V}$ vs Fc/Fc⁺ in the cyclic voltammogram (see the Supporting Information). The $E_{\rm ox}$ value was considerably lower than those of **5** $(+0.12 \, {\rm V})^{[20]}$ and **2** (ca. $-0.17 \, {\rm V}$). The electrochemical oxidation process of **6** can be monitored by absorption spectroscopy using a thin-layer cell. The UV/Vis absorption spectrum of triradical **6** in CH₂Cl₂ showed weak and broad absorptions in the 500–1000 nm region. Figure 3 shows the spectral changes in the electrochemical oxidation with an applied potential of

Figure 3. UV/Vis spectral change during the electrochemical oxidation of **6**: The dotted and solid lines show the spectra of neutral **6** and generated $\mathbf{6}^+$, respectively. The dashed lines show intermediate states.

-0.09 V versus Fc/Fc⁺, which is sufficiently high to oxidize **6**. During the oxidation, new absorption peaks at $\lambda_{max} = 360$, 530, and 710 nm appeared with isosbestic points. The new absorption peaks were ascribed to the generation of **6**⁺. The strong absorption at 710 nm is due to the quinoidal structure in **6**⁺. The observed spectral change was reversible, and the neutral compound **6** was reproduced by the electrochemical reduction of **6**⁺. This observation confirms that the conversion between **6** and **6**⁺ constitutes a new molecule-based switch involving a spin-state conversion from the ground-state doublet (**6**) to triplet (**6**⁺), as described below.

We isolated **6**⁺ in an almost pure form by chemical oxidation. Treatment of a CH₂Cl₂ solution of **6** with an equivalent amount of tris(4-bromophenyl)aminium hexachloroantimonate afforded the desired salt **6**⁺·SbCl₆⁻ as a blue solid.^[24] Single crystals of **6**⁺·SbCl₆⁻ were obtained by slow evaporation from a hexane/CH₂Cl₂ solution.^[25,26] The X-ray crystal structure is shown in Figure 4. The TOT skeleton of **6**⁺ has a planar structure, in contrast to the neutral compound **6**. Furthermore, one of the nitroxides is oriented in a different direction from the pseudo-*C*₃-symmetry. The

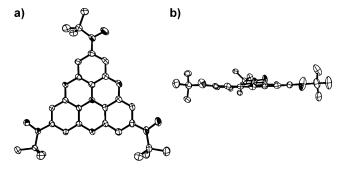
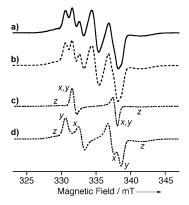



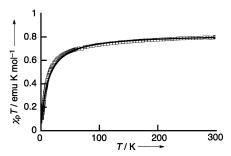
Figure 4. Crystal structure of $\mathbf{6}^+ \cdot \text{SbCl}_6^-$: a) top view; b) side view. The counterion SbCl_6^- and the hydrogen atoms are omitted for clarity. Ellipsoids at 50% probability. The whole molecule is of pseudo C_s symmetry owing to the asymmetric orientation of nitroxides around the axis normal to the ring. For atom labeling, see Figure 1.

dihedral angles between the nitroxide C_{sp^2} -N-O planes and the attached benzene rings are smaller (2–4°) than those of 6 (5–25°), which suggests that 6^+ possesses a trimethylenemethane-type π -conjugation network with the quinoidal structure

The X band ESR spectrum of $6^+ \cdot \text{SbCl}_6^-$ in a diethyl phthalate rigid glass at 200 K is shown in Figure 5. The ESR spectrum is composed of two triplet species with similar D values, but one has a vanishing E value and their g anisotropies are quite different. The spin-forbidden transition $(\Delta Ms = \pm 2)$ was clearly observed in a g = 4 region of the resonance field (see the Supporting Information). A quite similar spectrum was observed in frozen butyronitrile. The observed triplet ESR spectrum was satisfactorily reproduced by two sets of spin-Hamiltonian parameters: The triplet species 6^+a (S = 1, $g_x = 2.0080$, $g_y = 2.0080$, $g_z = 2.0030$, |D|/hc = 0.00575 cm⁻¹, |E|/hc = 0 cm⁻¹), with the vanishing E value, corresponds to the simulated spectrum in Figure 5 c.

Figure 5. ESR spectra of **6**⁺·SbCl₆⁻: a) observed spectrum in a frozen diethyl phthalate rigid glass at 200 K (microwave frequency = 9.410117 GHz); b) superposition of the simulated spectra (c, d, and spin-doublet impurity); c) simulated spectrum of the triplet species attributed to **6**⁺**a** (S=1, $g_x=2.0080$, $g_y=2.0080$, $g_z=2.0030$, |D|/hc=0.00575 cm⁻¹, |E|/hc=0 cm⁻¹); d) simulated spectrum attributed to **6**⁺**b** (S=1, $g_x=2.0051$, $g_y=2.0107$, $g_z=2.0030$, |D|/hc=0.00570 cm⁻¹, |E|/hc=0.00055 cm⁻¹). The only spin-allowed transitions ($\Delta Ms=\pm 1$) are shown. The broad absorption line around 335 mT is due to a spin-doublet impurity. The assignments of the canonical orientations denoted by x, y, and z are given in the simulation spectra.

3195


The other is the species 6^+b (S=1, $g_x = 2.0051$, $g_y = 2.0107$, $g_z = 2.0030$, $|D|/hc = 0.00570 \text{ cm}^{-1}$, $|E|/hc = 0.00055 \text{ cm}^{-1}$), with a non-vanishing E value and a larger g anisotropy, corresponding to the simulated spectrum in Figure 5d. These results suggest that triplet 6^+a has a C_3 -based symmetry, as observed in the crystalline state of the neutral species (6), and triplet 6^+b has a C_s symmetry, as shown in the crystal structure of 6^+ . To chemically identify the triplet species 6^+a and 6⁺b, we have invoked quantum chemical calculations of the zero-field splitting \bm{D} and \bm{g} tensors $^{[27]}$ for both cations ($\bm{6}^+\bm{a}$ and 6⁺b) and supramolecular chemical entities corresponding to the ion pairs (6⁺a·SbCl₆⁻ and 6⁺b·SbCl₆⁻). The theoretical evaluation of the tensors reasonably explains the experimental D, E and g values, and the relative orientation between the D and g tensors, which are needed to acquire complete spectral simulations (see the Supporting Information).

Thus, 6^+ in frozen solution was shown to exist as an equilibrium mixture of 6^+a and 6^+b , whereas 6^+ in the crystalline form has the structure of 6^+b , as confirmed by the X-ray analysis (Figure 4). Also, the electrospray ionization (ESI-MS) of 6^+ in acetonitrile (ca. 10^{-5} M) exhibited a peak of $1425 \ m/z$ (1% intensity) that corresponds to two 6^+ plus $SbCl_6^-$ with a base peak of $545 \ m/z$ (6^+), indicating the presence of a dimer in solution even at low concentration. Furthermore, the Curie plots using the ESR signal intensities I for the $\Delta Ms = \pm 2$ transition, I-1/T, resulted in a non-linear curve, suggesting the presence of diradical species possibly involving low-spin ground states in solution.

To obtain clear insight into the intramolecular exchange interaction, we have measured the magnetic susceptibility of the polycrystalline sample of $6^+ \cdot \text{SbCl}_6^-$. The temperature dependence of the paramagnetic susceptibility is shown in Figure 6. The $\chi_p T$ value at room temperature was approximately 0.8 emu K mol⁻¹ and almost constant down to 150 K. This $\chi_p T$ value is larger than the theoretical value for a magnetically independent two-spin system, suggesting the occurrence of a sizable ferromagnetic interaction. Below 150 K, the $\chi_p T$ value dropped sharply. The observed $\chi_p T - T$ curve can be simulated using the Curie–Weiss law for S = 1 [Eq. (2)] with a purity factor f of 0.82 and antiferromagnetic

$$\chi_{\rm p} T = f \frac{2N_{\rm A} g^2 \mu_{\rm B}^2}{3k_{\rm B}} \frac{1}{T-\theta} T \tag{2}$$

interaction θ of -11.5 K. A weak antiferromagnetic interaction θ is ascribed to an intermolecular magnetic interaction. The purity of the polycrystalline sample can also be estimated

Figure 6. Temperature dependence of $\chi_p T$ for ${\bf 6}^+ \cdot {\rm SbCl_6}^-$. The solid line is simulated based on the Curie–Weiss law [Eq. (2)] with f=0.82 and $\theta=-11.5$ K.

by the UV/Vis spectrum in solution, giving a consistent value (ca. 80%) assuming a quantitative transformation in the electrochemical oxidation. Thus, the magnetic behavior of the diradical cation ${\bf 6}^+$ is best explained by assuming a triplet ground state with a strong magnetic interaction of $J/k_{\rm B} \gg 300~{\rm K}$ between the two nitroxide radicals. The large positive J value $(J/k_{\rm B} \gg 300~{\rm K})$ is also consistent with theoretical calculations.^[28]

In summary, trinitroxide-substituted TOT $\bf 6$ showed a novel spin-state conversion from a neutral triradical doublet into diradical cation triplet states by the oxidative modulation of the π -conjugated TOT skeleton in their ground state. These observations are useful in the development of molecular electronic and spintronic devices using related spin-incorporated π -electronic systems. We also emphasize that the low-spin preference in $\bf 6$ with the strong antiferromagnetic exchange coupling and the location of the excited quartet state with an expected small D value provide important insights into an improved and extended approach to quantitative quantum-chemical evaluations for the exchange couplings in high-spin chemistry. Our research along this line is currently underway.

Received: October 14, 2011 Revised: December 12, 2011 Published online: February 16, 2012

Keywords: heterocycles \cdot magnetic properties \cdot radical ions \cdot radicals \cdot redox chemistry

- a) Magnetic Properties of Organic Materials (Ed.: P. M. Lahti), Marcel Dekker, New York, 1999; b) Molecular Magnetism (Eds.: K. Itoh, M. Kinoshita), Kodansha & Gordon and Breach, Tokyo, 2000; c) Magnetism: Molecules to Materials II (Eds.: J. S. Miller, M. Drillon), Wiley-VCH, Weinheim, 2001; d) π-Electron Magnetism From Molecules to Magnetic Materials (Ed.: J. Veciana), Springer, Berlin, 2001.
- 2] R. G. Hicks, Org. Biomol. Chem. 2007, 5, 1321-1338.
- [3] Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds (Ed.: R. G. Hicks), Wiley, Chichester, 2010.
- [4] a) S. Nishida, Y. Morita, K. Fukui, K. Sato, D. Shiomi, T. Takui, K. Nakasuji, Angew. Chem. 2005, 117, 7443-7446; Angew. Chem. Int. Ed. 2005, 44, 7277-7280; b) Y. Morita, S. Suzuki, K. Fukui, S. Nakazawa, H. Kitagawa, H. Kishida, H. Okamoto, A. Naito, A. Sekine, Y. Ohashi, M. Shiro, K. Sasaki, D. Shiomi, K.

- Sato, T. Takui, K. Nakasuji, *Nat. Mater.* **2008**, 7, 48–51; c) K. Sato, S. Nakazawa, R. Rahimi, T. Ise, S. Nishida, T. Yoshino, N. Mori, K. Toyota, D. Shiomi, Y. Yakiyama, Y. Morita, M. Kitagawa, K. Nakasuji, M. Nakahara, H. Hara, P. Carl, P. Höfer, T. Takui, *J. Mater. Chem.* **2009**, *19*, 3739–3754; d) T. Yoshino, S. Nishida, K. Sato, S. Nakazawa, R. Rahimi, K. Toyota, D. Shiomi, Y. Morita, M. Kitagawa, T. Takui, *J. Phys. Chem. Lett.* **2011**, 2, 449–453; e) Y. Morita, S. Suzuki, K. Sato, T. Takui, *Nat. Chem.* **2011**, 3, 197–204.
- [5] a) E. Coronado, A. J. Epstein, J. Mater. Chem. 2009, 19, 1670–1671; b) E. Coronado, P. Day, Chem. Rev. 2004, 104, 5419–5448;
 c) T. Enoki, A. Miyazaki, Chem. Rev. 2004, 104, 5449–5478.
- [6] T. Sugawara, H. Komatsu, K. Suzuki, Chem. Soc. Rev. 2011, 40, 3105–3118.
- [7] For example, a) S. K. Pal, M. E. Itkis, F. S. Tham, R. W. Reed, R. T. Oakley, R. C. Haddon, *Science* 2005, 309, 281–284; b) A. Iwasaki, L. Hu, R. Suizu, K. Nomura, H. Yoshikawa, K. Awaga, Y. Noda, K. Kanai, Y. Ouchi, K. Seki, H. Ito, *Angew. Chem.* 2009, 121, 4082–4084; *Angew. Chem. Int. Ed.* 2009, 48, 4022–4024.
- [8] H. Nishide, K. Oyaizu, Science 2008, 319, 737 738.
- [9] For example, a) S. Suzuki, T. Furui, M. Kuratsu, M. Kozaki, D. Shiomi, K. Sato, T. Takui, K. Okada, J. Am. Chem. Soc. 2010, 132, 15908-15910; b) A. Rajca, K. Shiraishi, M. Pink, S. Rajca, J. Am. Chem. Soc. 2007, 129, 7232-7233; c) A. Rajca, A. Olanktwanit, S. Rajca, J. Am. Chem. Soc. 2011, 133, 4750-4753; d) P. J. Boratyński, M. Pink, S. Rajca, A. Rajca, Angew. Chem. 2010, 122, 5591-5594; Angew. Chem. Int. Ed. 2010, 49, 5459-5462.
- [10] For example, a) A. Ito, K. Tanaka, Pure Appl. Chem. 2010, 82, 979–989; b) E. Fukuzaki, H. Nishide, Org. Lett. 2006, 8, 1835–1838.
- [11] a) M. M. Matsushita, H. Kawakami, Y. Kawada, T. Sugawara, Chem. Lett. 2007, 36, 110–111; b) M. M. Matsushita, H. Kawakami, T. Sugawara, M. Ogata, Phys. Rev. B 2008, 77, 195208.
- [12] a) S. Hiraoka, T. Okamoto, M. Kozaki, D. Shiomi, K. Sato, T. Takui, K. Okada, J. Am. Chem. Soc. 2004, 126, 58-59; b) Y. Masuda, M. Kuratsu, S. Suzuki, M. Kozaki, D. Shiomi, K. Sato, T. Takui, Y. Hosokoshi, X.-Z. Lan, Y. Miyazaki, A. Inaba, K. Okada, J. Am. Chem. Soc. 2009, 131, 4670-4673.
- [13] a) A. Izuoka, M. Hiraishi, T. Abe, T. Sugawara, K. Sato, T. Takui, J. Am. Chem. Soc. 2000, 122, 3234–3235; b) A. Ito, Y. Nakano, M. Urabe, T. Kato, K. Tanaka, J. Am. Chem. Soc. 2006, 128, 2948–2953.
- [14] A. Ito, Y. Nakano, T. Kato, K. Tanaka, Chem. Commun. 2005, 403–405.
- [15] K. Matsuda, H. Iwamura, J. Am. Chem. Soc. 1997, 119, 7412–7413
- [16] a) T. Itoh, K. Matsuda, H. Iwamura, Angew. Chem. 1999, 111, 1886–1888; Angew. Chem. Int. Ed. 1999, 38, 1791–1793; b) T. Itoh, K. Matsuda, H. Iwamura, K. Hori, J. Am. Chem. Soc. 2000, 122, 2567–2576; c) T. Itoh, K. Matsuda, H. Iwamura, K. Hori, J. Solid State Chem. 2001, 159, 428–439.

- [17] a) W. T. Borden in *Diradicals* (Ed.: W. T. Borden), Wiley, New York, **1982**, pp. 1–72; b) P. G. Wenthold, J. Hu, R. R. Squires, W. C. Lineberger, *J. Am. Chem. Soc.* **1996**, *118*, 475–476.
- [18] D. C. Oniciu, K. Matsuda, H. Iwamura, J. Chem. Soc. Perkin Trans. 2 1996, 907 – 913.
- [19] a) N. C. Yang, A. J. Castro, J. Am. Chem. Soc. 1960, 82, 6208;
 b) K. Mukai, K. Ishizu, M, Nakahara, Y. Deguchi, Bull. Chem. Soc. Jpn. 1980, 53, 3363 3364.
- [20] a) M. Kuratsu, M. Kozaki, K. Okada, Angew. Chem. 2005, 117, 4124-4126; Angew. Chem. Int. Ed. 2005, 44, 4056-4058; b) M. Kuratsu, S. Suzuki, M. Kozaki, D. Shiomi, K. Sato, T. Takui, K. Okada, Inorg. Chem. 2007, 46, 10153-10157.
- [21] K. Ishizu, H. Nagai, K. Mukai, M. Kohno, T. Yamamoto, *Chem. Lett.* 1973, 1261 1264.
- [22] Crystallographic data for **6**: orthorhombic, space group *Pbca* (no.61), a=8.6097(6), b=24.973(2), c=24.370(2) Å, V=5239.7(8) Å³, Z=8, $\rho_{\text{calcd}}=1.383$ g cm⁻³, T=150(2) K, R1=0.0951, wR2=0.2018, GOF=1.339. CCDC 833099 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [23] The spatial symmetry of the spin Hamiltonian should be set as the asymmetric triangle model with three unequal J values according to the crystallographic symmetry of $\mathbf{6}$. However, the temperature dependence of $\chi_p T$ was calculated using the more symmetric equilateral triangle model with a single J value and with an unspecified magnetic interaction (θ) to avoid overparameterization. See Ref. [16b,c] for an asymmetric triangle model.
- [24] The chemical oxidation using other tris(4-bromophenyl)aminium salts (ClO₄⁻, PF₆⁻) and thianthrenium tetrachlorogallate (see, Ref. [20b]) were examined. **6**⁺·SbCl₆⁻ exhibited good crystallinity and thus gave the highest purity.
- [25] Crystallographic data of $6^+\cdot \text{SbCl}_6^-$: triclinic, space group: $P\bar{1}$ (no.2), a=9.2100(15), b=13.430(3), c=16.620(3) Å, $\alpha=84.400(14)$, $\beta=75.470(12)$, $\gamma=74.690(12)^\circ$, V=1918.3(6) ų, Z=2, $\rho_{\text{calcd}}=1.524$ g cm⁻³, T=150(2) K, R1=0.0981, wR2=0.2286, GOF=1.149. CCDC 833100 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [26] The diradical cation 6+·SbCl₆⁻ was stable in the crystalline state, but slowly decomposed in solution. Thus, the recrystallization was performed within one day.
- [27] a) K. Sugisaki, K. Toyota, K. Sato, D. Shiomi, M. Kitagawa, T. Takui, *ChemPhysChem* 2010, 11, 3146–3151; b) K. Sugisaki, K. Toyota, K. Sato, D. Shiomi, M. Kitagawa, T. Takui, *Phys. Chem. Chem. Phys.* 2011, 13, 6970–6980.
- [28] The ground states of **6**⁺**a** and **6**⁺**b** were theoretically evaluated by the broken-symmetry approach (see K. Yamaguchi, T. Kawakami, Y. Takano, Y. Kitagawa, Y. Yamashita, H. Fujita, *Int. J. Quantum Chem.* **2002**, *90*, 370–385): The exchange interactions for **6**⁺**a** and **6**⁺**b** were found to be large positive values (>+10³ K, triplet ground state) for both species.